KERNELS OF MORPHISMS BETWEEN INDECOMPOSABLE INJECTIVE MODULES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deissler Rank Complexity of Powers of Indecomposable Injective Modules

Minimality ranks in the style of Deissler are one way of measuring the structural complexity of minimal extensions of first-order structures. In particular, positive Deissler rank measures the complexity of the injective envelope of a module as an extension of that module. In this paper we solve a problem of the second author by showing that certain injective envelopes have the maximum possible...

متن کامل

Generalizations of principally quasi-injective modules and quasiprincipally injective modules

LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...

متن کامل

Indecomposable injective modules of finite Malcev rank over local commutative rings

It is proven that each indecomposable injective module over a valuation domain R is polyserial if and only if each maximal immediate extension R̂ of R is of finite rank over the completion R̃ of R in the R-topology. In this case, for each indecomposable injective module E, the following invariants are finite and equal: its Malcev rank, its Fleischer rank and its dual Goldie dimension. Similar res...

متن کامل

Injective Classes of Modules

We study classes of modules over a commutative ring which allow to do homological algebra relative to such a class. We classify those classes consisting of injective modules by certain subsets of ideals. When the ring is Noetherian the subsets are precisely the generization closed subsets of the spectrum of the ring.

متن کامل

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2010

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089510000170